There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{2n}{(1 + n)})}^{n}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{2n}{(n + 1)})^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{2n}{(n + 1)})^{n}\right)}{dn}\\=&((\frac{2n}{(n + 1)})^{n}((1)ln(\frac{2n}{(n + 1)}) + \frac{(n)(2(\frac{-(1 + 0)}{(n + 1)^{2}})n + \frac{2}{(n + 1)})}{(\frac{2n}{(n + 1)})}))\\=&(\frac{2n}{(n + 1)})^{n}ln(\frac{2n}{(n + 1)}) - \frac{n^{2}(\frac{2n}{(n + 1)})^{n}}{(n + 1)^{2}} - \frac{n(\frac{2n}{(n + 1)})^{n}}{(n + 1)^{2}} + \frac{n(\frac{2n}{(n + 1)})^{n}}{(n + 1)} + \frac{(\frac{2n}{(n + 1)})^{n}}{(n + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !