There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(xy + {e}^{x}y)sec(x)}{sec(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = yx + y{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( yx + y{e}^{x}\right)}{dx}\\=&y + y({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&y{e}^{x} + y\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( y{e}^{x} + y\right)}{dx}\\=&y({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0\\=&y{e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !