There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(xy + {e}^{(xy)})sec(x)}{sec(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = yx + {e}^{(yx)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( yx + {e}^{(yx)}\right)}{dx}\\=&y + ({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)}))\\=&y{e}^{(yx)} + y\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( y{e}^{(yx)} + y\right)}{dx}\\=&y({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)})) + 0\\=&y^{2}{e}^{(yx)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !