There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan(sqrt(abs + (x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(sqrt(abs + x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(sqrt(abs + x))\right)}{dx}\\=&(\frac{(\frac{(0 + 1)*\frac{1}{2}}{(abs + x)^{\frac{1}{2}}})}{(1 + (sqrt(abs + x))^{2})})\\=&\frac{1}{2(abs + x)^{\frac{1}{2}}(sqrt(abs + x)^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !