Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ be^{-a}(\frac{e^{-b}e^{-c}{e}^{2}}{2})\ with\ respect\ to\ p:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}be^{-b}e^{-c}e^{2}e^{-a}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}be^{-b}e^{-c}e^{2}e^{-a}\right)}{dp}\\=&\frac{1}{2}be^{-b}*0e^{-c}e^{2}e^{-a} + \frac{1}{2}be^{-b}e^{-c}*0e^{2}e^{-a} + \frac{1}{2}be^{-b}e^{-c}*2e*0e^{-a} + \frac{1}{2}be^{-b}e^{-c}e^{2}e^{-a}*0\\=&\frac{0}{2}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return