There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {x}^{3} + {3}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} + {3}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} + {3}^{x}\right)}{dx}\\=&3x^{2} + ({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))\\=&3x^{2} + {3}^{x}ln(3)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2} + {3}^{x}ln(3)\right)}{dx}\\=&3*2x + ({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln(3) + \frac{{3}^{x}*0}{(3)}\\=&6x + {3}^{x}ln^{2}(3)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6x + {3}^{x}ln^{2}(3)\right)}{dx}\\=&6 + ({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln^{2}(3) + \frac{{3}^{x}*2ln(3)*0}{(3)}\\=&{3}^{x}ln^{3}(3) + 6\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !