There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {log_{2}^{2p}}^{x} - p\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {log_{2}^{2p}}^{x} - p\right)}{dx}\\=&({log_{2}^{2p}}^{x}((1)ln(log_{2}^{2p}) + \frac{(x)((\frac{(\frac{(0)}{(2p)} - \frac{(0)log_{2}^{2p}}{(2)})}{(ln(2))}))}{(log_{2}^{2p})})) + 0\\=&{log_{2}^{2p}}^{x}ln(log_{2}^{2p})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !