There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{2}^{{(2p)}^{x} - p}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{2}^{(2p)^{x} - p}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{2}^{(2p)^{x} - p}\right)}{dx}\\=&(\frac{(\frac{(((2p)^{x}((1)ln(2p) + \frac{(x)(0)}{(2p)})) + 0)}{((2p)^{x} - p)} - \frac{(0)log_{2}^{(2p)^{x} - p}}{(2)})}{(ln(2))})\\=&\frac{(2p)^{x}ln(2p)}{((2p)^{x} - p)ln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !