There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(5 - cos(x))}^{(2x - 3)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-cos(x) + 5)^{(2x - 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-cos(x) + 5)^{(2x - 3)}\right)}{dx}\\=&((-cos(x) + 5)^{(2x - 3)}((2 + 0)ln(-cos(x) + 5) + \frac{(2x - 3)(--sin(x) + 0)}{(-cos(x) + 5)}))\\=&2(-cos(x) + 5)^{(2x - 3)}ln(-cos(x) + 5) + \frac{2x(-cos(x) + 5)^{(2x - 3)}sin(x)}{(-cos(x) + 5)} - \frac{3(-cos(x) + 5)^{(2x - 3)}sin(x)}{(-cos(x) + 5)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !