There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{{x}^{2}} - 1)ln(1 - 6x)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{x^{2}}ln(-6x + 1)}{x} - \frac{ln(-6x + 1)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{x^{2}}ln(-6x + 1)}{x} - \frac{ln(-6x + 1)}{x}\right)}{dx}\\=&\frac{-{e}^{x^{2}}ln(-6x + 1)}{x^{2}} + \frac{({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))ln(-6x + 1)}{x} + \frac{{e}^{x^{2}}(-6 + 0)}{x(-6x + 1)} - \frac{-ln(-6x + 1)}{x^{2}} - \frac{(-6 + 0)}{x(-6x + 1)}\\=&\frac{-{e}^{x^{2}}ln(-6x + 1)}{x^{2}} + 2{e}^{x^{2}}ln(-6x + 1) - \frac{6{e}^{x^{2}}}{(-6x + 1)x} + \frac{ln(-6x + 1)}{x^{2}} + \frac{6}{(-6x + 1)x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !