There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2021{({x}^{2} + 5x)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2021x^{6} + 30315x^{5} + 151575x^{4} + 252625x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2021x^{6} + 30315x^{5} + 151575x^{4} + 252625x^{3}\right)}{dx}\\=&2021*6x^{5} + 30315*5x^{4} + 151575*4x^{3} + 252625*3x^{2}\\=&12126x^{5} + 151575x^{4} + 606300x^{3} + 757875x^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12126x^{5} + 151575x^{4} + 606300x^{3} + 757875x^{2}\right)}{dx}\\=&12126*5x^{4} + 151575*4x^{3} + 606300*3x^{2} + 757875*2x\\=&60630x^{4} + 606300x^{3} + 1818900x^{2} + 1515750x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !