Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{e}^{(sqrt(-1)(bc - dx))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a{e}^{(bcsqrt(-1) - dxsqrt(-1))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{e}^{(bcsqrt(-1) - dxsqrt(-1))}\right)}{dx}\\=&a({e}^{(bcsqrt(-1) - dxsqrt(-1))}((bc*0*\frac{1}{2}*-1^{\frac{1}{2}} - dsqrt(-1) - dx*0*\frac{1}{2}*-1^{\frac{1}{2}})ln(e) + \frac{(bcsqrt(-1) - dxsqrt(-1))(0)}{(e)}))\\=& - ad{e}^{(bcsqrt(-1) - dxsqrt(-1))}sqrt(-1)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return