There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{3} + 7){(2x - 3)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{5} - 12x^{4} + 28x^{2} + 9x^{3} - 84x + 63\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{5} - 12x^{4} + 28x^{2} + 9x^{3} - 84x + 63\right)}{dx}\\=&4*5x^{4} - 12*4x^{3} + 28*2x + 9*3x^{2} - 84 + 0\\=&20x^{4} - 48x^{3} + 56x + 27x^{2} - 84\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !