There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ e^{2x}(sin(x)) + e^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{2x}sin(x) + e^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{2x}sin(x) + e^{2}\right)}{dx}\\=&e^{2x}*2sin(x) + e^{2x}cos(x) + e^{2}*0\\=&2e^{2x}sin(x) + e^{2x}cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2e^{2x}sin(x) + e^{2x}cos(x)\right)}{dx}\\=&2e^{2x}*2sin(x) + 2e^{2x}cos(x) + e^{2x}*2cos(x) + e^{2x}*-sin(x)\\=&3e^{2x}sin(x) + 4e^{2x}cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !