Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{3}{3}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}{3}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}{3}^{x}\right)}{dx}\\=&3x^{2}{3}^{x} + x^{3}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))\\=&x^{3}{3}^{x}ln(3) + 3x^{2}{3}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( x^{3}{3}^{x}ln(3) + 3x^{2}{3}^{x}\right)}{dx}\\=&3x^{2}{3}^{x}ln(3) + x^{3}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))ln(3) + \frac{x^{3}{3}^{x}*0}{(3)} + 3*2x{3}^{x} + 3x^{2}({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))\\=&6x^{2}{3}^{x}ln(3) + x^{3}{3}^{x}ln^{2}(3) + 6x{3}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return