There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{2}}{(sqrt({(1 - {x}^{2})}^{2} + {(2yx)}^{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{sqrt(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{sqrt(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)}\right)}{dx}\\=&\frac{2x}{sqrt(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)} + \frac{x^{2}*-(4x^{3} - 2*2x + 4y^{2}*2x + 0)*\frac{1}{2}}{(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{2x}{sqrt(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)} - \frac{2x^{5}}{(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)^{\frac{3}{2}}} + \frac{2x^{3}}{(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)^{\frac{3}{2}}} - \frac{4y^{2}x^{3}}{(x^{4} - 2x^{2} + 4y^{2}x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !