There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqart(\frac{{(5x - 453.846)}^{2}}{(6873.032 + 0.833{x}^{2} - 151.282x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{25sqartx^{2}}{(0.833x - 151.282x + 6873.032)} - \frac{2269.23sqartx}{(0.833x - 151.282x + 6873.032)} - \frac{2269.23sqartx}{(0.833x - 151.282x + 6873.032)} + \frac{205976.191716sqart}{(0.833x - 151.282x + 6873.032)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{25sqartx^{2}}{(0.833x - 151.282x + 6873.032)} - \frac{2269.23sqartx}{(0.833x - 151.282x + 6873.032)} - \frac{2269.23sqartx}{(0.833x - 151.282x + 6873.032)} + \frac{205976.191716sqart}{(0.833x - 151.282x + 6873.032)}\right)}{dx}\\=&25(\frac{-(0.833 - 151.282 + 0)}{(0.833x - 151.282x + 6873.032)^{2}})sqartx^{2} + \frac{25sqart*2x}{(0.833x - 151.282x + 6873.032)} - 2269.23(\frac{-(0.833 - 151.282 + 0)}{(0.833x - 151.282x + 6873.032)^{2}})sqartx - \frac{2269.23sqart}{(0.833x - 151.282x + 6873.032)} - 2269.23(\frac{-(0.833 - 151.282 + 0)}{(0.833x - 151.282x + 6873.032)^{2}})sqartx - \frac{2269.23sqart}{(0.833x - 151.282x + 6873.032)} + 205976.191716(\frac{-(0.833 - 151.282 + 0)}{(0.833x - 151.282x + 6873.032)^{2}})sqart + 0\\=&\frac{3761.225sqartx^{2}}{(0.833x - 151.282x + 6873.032)(0.833x - 151.282x + 6873.032)} + \frac{50sqartx}{(0.833x - 151.282x + 6873.032)} - \frac{341403.38427sqartx}{(0.833x - 151.282x + 6873.032)(0.833x - 151.282x + 6873.032)} - \frac{2269.23sqart}{(0.833x - 151.282x + 6873.032)} - \frac{341403.38427sqartx}{(0.833x - 151.282x + 6873.032)(0.833x - 151.282x + 6873.032)} - \frac{2269.23sqart}{(0.833x - 151.282x + 6873.032)} + \frac{30988912.0674805sqart}{(0.833x - 151.282x + 6873.032)(0.833x - 151.282x + 6873.032)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !