Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{a}x(cos(bx)a + bsin(bx))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax{e}^{a}cos(bx) + bx{e}^{a}sin(bx)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax{e}^{a}cos(bx) + bx{e}^{a}sin(bx)\right)}{dx}\\=&a{e}^{a}cos(bx) + ax({e}^{a}((0)ln(e) + \frac{(a)(0)}{(e)}))cos(bx) + ax{e}^{a}*-sin(bx)b + b{e}^{a}sin(bx) + bx({e}^{a}((0)ln(e) + \frac{(a)(0)}{(e)}))sin(bx) + bx{e}^{a}cos(bx)b\\=&a{e}^{a}cos(bx) - abx{e}^{a}sin(bx) + b{e}^{a}sin(bx) + b^{2}x{e}^{a}cos(bx)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return