Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{3}}{(8 - 4x - 2{x}^{2} - {x}^{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{3}}{(-4x - 2x^{2} - x^{3} + 8)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{3}}{(-4x - 2x^{2} - x^{3} + 8)}\right)}{dx}\\=&(\frac{-(-4 - 2*2x - 3x^{2} + 0)}{(-4x - 2x^{2} - x^{3} + 8)^{2}})x^{3} + \frac{3x^{2}}{(-4x - 2x^{2} - x^{3} + 8)}\\=&\frac{4x^{4}}{(-4x - 2x^{2} - x^{3} + 8)^{2}} + \frac{3x^{5}}{(-4x - 2x^{2} - x^{3} + 8)^{2}} + \frac{4x^{3}}{(-4x - 2x^{2} - x^{3} + 8)^{2}} + \frac{3x^{2}}{(-4x - 2x^{2} - x^{3} + 8)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return