There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(2x + 1)}{(2 - 3x + {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(2x + 1)}{(-3x + x^{2} + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(2x + 1)}{(-3x + x^{2} + 2)}\right)}{dx}\\=&(\frac{-(-3 + 2x + 0)}{(-3x + x^{2} + 2)^{2}})ln(2x + 1) + \frac{(2 + 0)}{(-3x + x^{2} + 2)(2x + 1)}\\=&\frac{-2xln(2x + 1)}{(-3x + x^{2} + 2)^{2}} + \frac{3ln(2x + 1)}{(-3x + x^{2} + 2)^{2}} + \frac{2}{(2x + 1)(-3x + x^{2} + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !