Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{({3}^{(2x)} - 1)x}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{4}x{3}^{(2x)} - \frac{1}{4}x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}x{3}^{(2x)} - \frac{1}{4}x\right)}{dx}\\=&\frac{1}{4} * {3}^{(2x)} + \frac{1}{4}x({3}^{(2x)}((2)ln(3) + \frac{(2x)(0)}{(3)})) - \frac{1}{4}\\=&\frac{{3}^{(2x)}}{4} + \frac{x{3}^{(2x)}ln(3)}{2} - \frac{1}{4}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{3}^{(2x)}}{4} + \frac{x{3}^{(2x)}ln(3)}{2} - \frac{1}{4}\right)}{dx}\\=&\frac{({3}^{(2x)}((2)ln(3) + \frac{(2x)(0)}{(3)}))}{4} + \frac{{3}^{(2x)}ln(3)}{2} + \frac{x({3}^{(2x)}((2)ln(3) + \frac{(2x)(0)}{(3)}))ln(3)}{2} + \frac{x{3}^{(2x)}*0}{2(3)} + 0\\=&{3}^{(2x)}ln(3) + x{3}^{(2x)}ln^{2}(3)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return