There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ cos(sin(x)) - cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(sin(x)) - cos(x)\right)}{dx}\\=&-sin(sin(x))cos(x) - -sin(x)\\=&-sin(sin(x))cos(x) + sin(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -sin(sin(x))cos(x) + sin(x)\right)}{dx}\\=&-cos(sin(x))cos(x)cos(x) - sin(sin(x))*-sin(x) + cos(x)\\=&-cos^{2}(x)cos(sin(x)) + sin(x)sin(sin(x)) + cos(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -cos^{2}(x)cos(sin(x)) + sin(x)sin(sin(x)) + cos(x)\right)}{dx}\\=&--2cos(x)sin(x)cos(sin(x)) - cos^{2}(x)*-sin(sin(x))cos(x) + cos(x)sin(sin(x)) + sin(x)cos(sin(x))cos(x) + -sin(x)\\=&3sin(x)cos(x)cos(sin(x)) + sin(sin(x))cos^{3}(x) + sin(sin(x))cos(x) - sin(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 3sin(x)cos(x)cos(sin(x)) + sin(sin(x))cos^{3}(x) + sin(sin(x))cos(x) - sin(x)\right)}{dx}\\=&3cos(x)cos(x)cos(sin(x)) + 3sin(x)*-sin(x)cos(sin(x)) + 3sin(x)cos(x)*-sin(sin(x))cos(x) + cos(sin(x))cos(x)cos^{3}(x) + sin(sin(x))*-3cos^{2}(x)sin(x) + cos(sin(x))cos(x)cos(x) + sin(sin(x))*-sin(x) - cos(x)\\=&4cos^{2}(x)cos(sin(x)) - 3sin^{2}(x)cos(sin(x)) - 6sin(x)sin(sin(x))cos^{2}(x) + cos^{4}(x)cos(sin(x)) - sin(x)sin(sin(x)) - cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !