Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (5 - 5cos(\frac{3}{2}t) + b)cos(t) - asin(t)\ with\ respect\ to\ t:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 5cos(\frac{3}{2}t)cos(t) + 5cos(t) + bcos(t) - asin(t)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 5cos(\frac{3}{2}t)cos(t) + 5cos(t) + bcos(t) - asin(t)\right)}{dt}\\=& - 5*-sin(\frac{3}{2}t)*\frac{3}{2}cos(t) - 5cos(\frac{3}{2}t)*-sin(t) + 5*-sin(t) + b*-sin(t) - acos(t)\\=&\frac{15sin(\frac{3}{2}t)cos(t)}{2} + 5sin(t)cos(\frac{3}{2}t) - 5sin(t) - bsin(t) - acos(t)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return