Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {({x}^{4} - 3{x}^{2} + 4)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{4} - 3x^{2} + 4)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{4} - 3x^{2} + 4)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(4x^{3} - 3*2x + 0)}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}})\\=&\frac{2x^{3}}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}} - \frac{3x}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x^{3}}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}} - \frac{3x}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}}\right)}{dx}\\=&2(\frac{\frac{-1}{2}(4x^{3} - 3*2x + 0)}{(x^{4} - 3x^{2} + 4)^{\frac{3}{2}}})x^{3} + \frac{2*3x^{2}}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}} - 3(\frac{\frac{-1}{2}(4x^{3} - 3*2x + 0)}{(x^{4} - 3x^{2} + 4)^{\frac{3}{2}}})x - \frac{3}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}}\\=&\frac{-4x^{6}}{(x^{4} - 3x^{2} + 4)^{\frac{3}{2}}} + \frac{12x^{4}}{(x^{4} - 3x^{2} + 4)^{\frac{3}{2}}} + \frac{6x^{2}}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}} - \frac{9x^{2}}{(x^{4} - 3x^{2} + 4)^{\frac{3}{2}}} - \frac{3}{(x^{4} - 3x^{2} + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return