Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{2}^{\frac{1}{({x}^{2} + {y}^{2})}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{2}^{\frac{1}{(x^{2} + y^{2})}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{2}^{\frac{1}{(x^{2} + y^{2})}}\right)}{dx}\\=&(\frac{(\frac{((\frac{-(2x + 0)}{(x^{2} + y^{2})^{2}}))}{(\frac{1}{(x^{2} + y^{2})})} - \frac{(0)log_{2}^{\frac{1}{(x^{2} + y^{2})}}}{(2)})}{(ln(2))})\\=&\frac{-2x}{(x^{2} + y^{2})ln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return