Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{((x - 1){e}^{arctan(x)})}{(2{(1 + {x}^{2})}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}x{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}} - \frac{\frac{1}{2}{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}x{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}} - \frac{\frac{1}{2}{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{1}{2}(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}})x{e}^{arctan(x)} + \frac{\frac{1}{2}{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{1}{2}}} + \frac{\frac{1}{2}x({e}^{arctan(x)}(((\frac{(1)}{(1 + (x)^{2})}))ln(e) + \frac{(arctan(x))(0)}{(e)}))}{(x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{2}(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}}){e}^{arctan(x)} - \frac{\frac{1}{2}({e}^{arctan(x)}(((\frac{(1)}{(1 + (x)^{2})}))ln(e) + \frac{(arctan(x))(0)}{(e)}))}{(x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-x^{2}{e}^{arctan(x)}}{2(x^{2} + 1)^{\frac{3}{2}}} + \frac{{e}^{arctan(x)}}{2(x^{2} + 1)^{\frac{1}{2}}} + \frac{x{e}^{arctan(x)}}{(x^{2} + 1)^{\frac{3}{2}}} - \frac{{e}^{arctan(x)}}{2(x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return