Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(tan(3)(1 + 3{x}^{2}))}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 27x^{6}tan^{3}(3) + 27x^{4}tan^{3}(3) + 9x^{2}tan^{3}(3) + tan^{3}(3)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 27x^{6}tan^{3}(3) + 27x^{4}tan^{3}(3) + 9x^{2}tan^{3}(3) + tan^{3}(3)\right)}{dx}\\=&27*6x^{5}tan^{3}(3) + 27x^{6}*3tan^{2}(3)sec^{2}(3)(0) + 27*4x^{3}tan^{3}(3) + 27x^{4}*3tan^{2}(3)sec^{2}(3)(0) + 9*2xtan^{3}(3) + 9x^{2}*3tan^{2}(3)sec^{2}(3)(0) + 3tan^{2}(3)sec^{2}(3)(0)\\=&162x^{5}tan^{3}(3) + 108x^{3}tan^{3}(3) + 18xtan^{3}(3)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return