There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{5}{\frac{1}{({x}^{2} - 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{5}}{(x^{2} - 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{5}}{(x^{2} - 1)^{2}}\right)}{dx}\\=&(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x^{5} + \frac{5x^{4}}{(x^{2} - 1)^{2}}\\=&\frac{-4x^{6}}{(x^{2} - 1)^{3}} + \frac{5x^{4}}{(x^{2} - 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4x^{6}}{(x^{2} - 1)^{3}} + \frac{5x^{4}}{(x^{2} - 1)^{2}}\right)}{dx}\\=&-4(\frac{-3(2x + 0)}{(x^{2} - 1)^{4}})x^{6} - \frac{4*6x^{5}}{(x^{2} - 1)^{3}} + 5(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x^{4} + \frac{5*4x^{3}}{(x^{2} - 1)^{2}}\\=&\frac{24x^{7}}{(x^{2} - 1)^{4}} - \frac{44x^{5}}{(x^{2} - 1)^{3}} + \frac{20x^{3}}{(x^{2} - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !