Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2x - 1)}^{4}{\frac{1}{(x - 2)}}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{16x^{4}}{(x - 2)^{5}} - \frac{32x^{3}}{(x - 2)^{5}} + \frac{24x^{2}}{(x - 2)^{5}} - \frac{8x}{(x - 2)^{5}} + \frac{1}{(x - 2)^{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{16x^{4}}{(x - 2)^{5}} - \frac{32x^{3}}{(x - 2)^{5}} + \frac{24x^{2}}{(x - 2)^{5}} - \frac{8x}{(x - 2)^{5}} + \frac{1}{(x - 2)^{5}}\right)}{dx}\\=&16(\frac{-5(1 + 0)}{(x - 2)^{6}})x^{4} + \frac{16*4x^{3}}{(x - 2)^{5}} - 32(\frac{-5(1 + 0)}{(x - 2)^{6}})x^{3} - \frac{32*3x^{2}}{(x - 2)^{5}} + 24(\frac{-5(1 + 0)}{(x - 2)^{6}})x^{2} + \frac{24*2x}{(x - 2)^{5}} - 8(\frac{-5(1 + 0)}{(x - 2)^{6}})x - \frac{8}{(x - 2)^{5}} + (\frac{-5(1 + 0)}{(x - 2)^{6}})\\=&\frac{-80x^{4}}{(x - 2)^{6}} + \frac{64x^{3}}{(x - 2)^{5}} + \frac{160x^{3}}{(x - 2)^{6}} - \frac{96x^{2}}{(x - 2)^{5}} - \frac{120x^{2}}{(x - 2)^{6}} + \frac{48x}{(x - 2)^{5}} + \frac{40x}{(x - 2)^{6}} - \frac{8}{(x - 2)^{5}} - \frac{5}{(x - 2)^{6}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return