There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(x + 3)}^{4} + e^{3x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4} + 12x^{3} + 54x^{2} + 108x + e^{3x} + 81\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4} + 12x^{3} + 54x^{2} + 108x + e^{3x} + 81\right)}{dx}\\=&4x^{3} + 12*3x^{2} + 54*2x + 108 + e^{3x}*3 + 0\\=&4x^{3} + 36x^{2} + 108x + 3e^{3x} + 108\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3} + 36x^{2} + 108x + 3e^{3x} + 108\right)}{dx}\\=&4*3x^{2} + 36*2x + 108 + 3e^{3x}*3 + 0\\=&12x^{2} + 72x + 9e^{3x} + 108\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !