There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(xln(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(xln(x))\right)}{dx}\\=&cos(xln(x))(ln(x) + \frac{x}{(x)})\\=&ln(x)cos(xln(x)) + cos(xln(x))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( ln(x)cos(xln(x)) + cos(xln(x))\right)}{dx}\\=&\frac{cos(xln(x))}{(x)} + ln(x)*-sin(xln(x))(ln(x) + \frac{x}{(x)}) + -sin(xln(x))(ln(x) + \frac{x}{(x)})\\=&\frac{cos(xln(x))}{x} - ln^{2}(x)sin(xln(x)) - 2ln(x)sin(xln(x)) - sin(xln(x))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !