There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(3sin(x) + 2cos(x) - 5)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 54sin^{2}(x)cos(x) + 36sin(x)cos^{2}(x) - 180sin(x)cos(x) - 135sin^{2}(x) + 27sin^{3}(x) + 8cos^{3}(x) - 60cos^{2}(x) + 225sin(x) + 150cos(x) - 125\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 54sin^{2}(x)cos(x) + 36sin(x)cos^{2}(x) - 180sin(x)cos(x) - 135sin^{2}(x) + 27sin^{3}(x) + 8cos^{3}(x) - 60cos^{2}(x) + 225sin(x) + 150cos(x) - 125\right)}{dx}\\=&54*2sin(x)cos(x)cos(x) + 54sin^{2}(x)*-sin(x) + 36cos(x)cos^{2}(x) + 36sin(x)*-2cos(x)sin(x) - 180cos(x)cos(x) - 180sin(x)*-sin(x) - 135*2sin(x)cos(x) + 27*3sin^{2}(x)cos(x) + 8*-3cos^{2}(x)sin(x) - 60*-2cos(x)sin(x) + 225cos(x) + 150*-sin(x) + 0\\=&84sin(x)cos^{2}(x) + 9sin^{2}(x)cos(x) + 36cos^{3}(x) - 150sin(x)cos(x) - 180cos^{2}(x) + 180sin^{2}(x) - 54sin^{3}(x) + 225cos(x) - 150sin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !