There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sqrt(x))}{(2 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(x)}{(-x + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(x)}{(-x + 2)}\right)}{dx}\\=&(\frac{-(-1 + 0)}{(-x + 2)^{2}})sqrt(x) + \frac{\frac{1}{2}}{(-x + 2)(x)^{\frac{1}{2}}}\\=&\frac{sqrt(x)}{(-x + 2)^{2}} + \frac{1}{2(-x + 2)x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !