There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{({r}^{2} - {x}^{2})}^{(\frac{-1}{2})} + b\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1}{(r^{2} - x^{2})^{\frac{1}{2}}} + b\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1}{(r^{2} - x^{2})^{\frac{1}{2}}} + b\right)}{dx}\\=&-(\frac{\frac{-1}{2}(0 - 2x)}{(r^{2} - x^{2})^{\frac{3}{2}}}) + 0\\=&\frac{-x}{(r^{2} - x^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !