Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xlog_{2}^{log_{2}^{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xlog_{2}^{log_{2}^{x}}\right)}{dx}\\=&log_{2}^{log_{2}^{x}} + x(\frac{(\frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}))}{(log_{2}^{x})} - \frac{(0)log_{2}^{log_{2}^{x}}}{(2)})}{(ln(2))})\\=&\frac{1}{log(2, x)ln^{2}(2)} + log_{2}^{log_{2}^{x}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return