There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(1 - {e}^{(\frac{-3}{x})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x{e}^{(\frac{-3}{x})} + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x{e}^{(\frac{-3}{x})} + x\right)}{dx}\\=& - {e}^{(\frac{-3}{x})} - x({e}^{(\frac{-3}{x})}((\frac{-3*-1}{x^{2}})ln(e) + \frac{(\frac{-3}{x})(0)}{(e)})) + 1\\=& - {e}^{(\frac{-3}{x})} - \frac{3{e}^{(\frac{-3}{x})}}{x} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !