There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} - 2x + 1)}^{6}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} - 2x + 1)^{6}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} - 2x + 1)^{6}\right)}{dx}\\=&(6(x^{2} - 2x + 1)^{5}(2x - 2 + 0))\\=&12x^{11} - 132x^{10} + 660x^{9} - 1980x^{8} + 3960x^{7} - 5544x^{6} + 5544x^{5} - 3960x^{4} + 1980x^{3} - 660x^{2} + 132x - 12\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !