There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(x + {e}^{arcsin(sh(x))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x + {e}^{arcsin(sh(x))})\right)}{dx}\\=&\frac{(1 + ({e}^{arcsin(sh(x))}(((\frac{(ch(x))}{((1 - (sh(x))^{2})^{\frac{1}{2}})}))ln(e) + \frac{(arcsin(sh(x)))(0)}{(e)})))}{(x + {e}^{arcsin(sh(x))})}\\=&\frac{{e}^{arcsin(sh(x))}ch(x)}{(x + {e}^{arcsin(sh(x))})(-sh^{2}(x) + 1)^{\frac{1}{2}}} + \frac{1}{(x + {e}^{arcsin(sh(x))})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !