There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2}{(1 + 1 + 3{\frac{1}{e}}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{(3{\frac{1}{e}}^{x} + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{(3{\frac{1}{e}}^{x} + 2)}\right)}{dx}\\=&2(\frac{-(3({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) + 0)}{(3{\frac{1}{e}}^{x} + 2)^{2}})\\=&\frac{6{\frac{1}{e}}^{x}}{(3{\frac{1}{e}}^{x} + 2)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !