There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} + sqrt(3)x + \frac{3}{4})(36 - {x}^{2} + x - \frac{1}{4})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x^{3}sqrt(3) + x^{2}sqrt(3) + \frac{143}{4}xsqrt(3) - x^{4} + x^{3} + 35x^{2} + \frac{3}{4}x + \frac{429}{16}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x^{3}sqrt(3) + x^{2}sqrt(3) + \frac{143}{4}xsqrt(3) - x^{4} + x^{3} + 35x^{2} + \frac{3}{4}x + \frac{429}{16}\right)}{dx}\\=& - 3x^{2}sqrt(3) - x^{3}*0*\frac{1}{2}*3^{\frac{1}{2}} + 2xsqrt(3) + x^{2}*0*\frac{1}{2}*3^{\frac{1}{2}} + \frac{143}{4}sqrt(3) + \frac{143}{4}x*0*\frac{1}{2}*3^{\frac{1}{2}} - 4x^{3} + 3x^{2} + 35*2x + \frac{3}{4} + 0\\=& - 3x^{2}sqrt(3) + 2xsqrt(3) + \frac{143sqrt(3)}{4} - 4x^{3} + 3x^{2} + 70x + \frac{3}{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !