There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(cos(log_{2}^{{x}^{2}}))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos^{2}(log_{2}^{x^{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos^{2}(log_{2}^{x^{2}})\right)}{dx}\\=&-2cos(log_{2}^{x^{2}})sin(log_{2}^{x^{2}})(\frac{(\frac{(2x)}{(x^{2})} - \frac{(0)log_{2}^{x^{2}}}{(2)})}{(ln(2))})\\=&\frac{-4sin(log_{2}^{x^{2}})cos(log_{2}^{x^{2}})}{xln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !