There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(({x}^{2} - 1){\frac{1}{(2x + 1)}}^{\frac{1}{3}})}^{\frac{1}{5}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (\frac{x^{2}}{(2x + 1)^{\frac{1}{3}}} - \frac{1}{(2x + 1)^{\frac{1}{3}}})^{\frac{1}{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (\frac{x^{2}}{(2x + 1)^{\frac{1}{3}}} - \frac{1}{(2x + 1)^{\frac{1}{3}}})^{\frac{1}{5}}\right)}{dx}\\=&(\frac{\frac{1}{5}((\frac{\frac{-1}{3}(2 + 0)}{(2x + 1)^{\frac{4}{3}}})x^{2} + \frac{2x}{(2x + 1)^{\frac{1}{3}}} - (\frac{\frac{-1}{3}(2 + 0)}{(2x + 1)^{\frac{4}{3}}}))}{(\frac{x^{2}}{(2x + 1)^{\frac{1}{3}}} - \frac{1}{(2x + 1)^{\frac{1}{3}}})^{\frac{4}{5}}})\\=&\frac{-2x^{2}}{15(\frac{x^{2}}{(2x + 1)^{\frac{1}{3}}} - \frac{1}{(2x + 1)^{\frac{1}{3}}})^{\frac{4}{5}}(2x + 1)^{\frac{4}{3}}} + \frac{2x}{5(\frac{x^{2}}{(2x + 1)^{\frac{1}{3}}} - \frac{1}{(2x + 1)^{\frac{1}{3}}})^{\frac{4}{5}}(2x + 1)^{\frac{1}{3}}} + \frac{2}{15(\frac{x^{2}}{(2x + 1)^{\frac{1}{3}}} - \frac{1}{(2x + 1)^{\frac{1}{3}}})^{\frac{4}{5}}(2x + 1)^{\frac{4}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !