Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2{π}^{(\frac{-1}{2})}({e}^{(\frac{-1}{2})}{x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x^{2}}{π^{\frac{1}{2}}e^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x^{2}}{π^{\frac{1}{2}}e^{\frac{1}{2}}}\right)}{dx}\\=&\frac{2*2x}{π^{\frac{1}{2}}e^{\frac{1}{2}}} + \frac{2x^{2}*\frac{-1}{2}*0}{π^{\frac{1}{2}}e^{\frac{3}{2}}}\\=&\frac{4x}{π^{\frac{1}{2}}e^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{4x}{π^{\frac{1}{2}}e^{\frac{1}{2}}}\right)}{dx}\\=&\frac{4}{π^{\frac{1}{2}}e^{\frac{1}{2}}} + \frac{4x*\frac{-1}{2}*0}{π^{\frac{1}{2}}e^{\frac{3}{2}}}\\=&\frac{4}{π^{\frac{1}{2}}e^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return