There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 5x{e}^{\frac{1}{(4x)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5x{e}^{(\frac{\frac{1}{4}}{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5x{e}^{(\frac{\frac{1}{4}}{x})}\right)}{dx}\\=&5{e}^{(\frac{\frac{1}{4}}{x})} + 5x({e}^{(\frac{\frac{1}{4}}{x})}((\frac{\frac{1}{4}*-1}{x^{2}})ln(e) + \frac{(\frac{\frac{1}{4}}{x})(0)}{(e)}))\\=&5{e}^{(\frac{\frac{1}{4}}{x})} - \frac{5{e}^{(\frac{\frac{1}{4}}{x})}}{4x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !