Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{\frac{1}{x}} - 1)}{({e}^{\frac{1}{x}} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{\frac{1}{x}}}{({e}^{\frac{1}{x}} + 1)} - \frac{1}{({e}^{\frac{1}{x}} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{\frac{1}{x}}}{({e}^{\frac{1}{x}} + 1)} - \frac{1}{({e}^{\frac{1}{x}} + 1)}\right)}{dx}\\=&(\frac{-(({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) + 0)}{({e}^{\frac{1}{x}} + 1)^{2}}){e}^{\frac{1}{x}} + \frac{({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{({e}^{\frac{1}{x}} + 1)} - (\frac{-(({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) + 0)}{({e}^{\frac{1}{x}} + 1)^{2}})\\=&\frac{-{e}^{\frac{1}{x}}}{({e}^{\frac{1}{x}} + 1)x^{2}} + \frac{{e}^{(\frac{2}{x})}}{({e}^{\frac{1}{x}} + 1)^{2}x^{2}} - \frac{{e}^{\frac{1}{x}}}{({e}^{\frac{1}{x}} + 1)^{2}x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return