There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{x}{2})}^{(n + n*2)}{(1 - x)}^{n}*3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3(-x + 1)^{(4n)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3(-x + 1)^{(4n)}\right)}{dx}\\=&3((-x + 1)^{(4n)}((0)ln(-x + 1) + \frac{(4n)(-1 + 0)}{(-x + 1)}))\\=&\frac{-12n(-x + 1)^{(4n)}}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !