There are 1 questions in this calculation: for each question, the 1 derivative of w is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{e}^{(-wx + b)}{\frac{1}{({e}^{(-wx + b)} + 1)}}^{2}\ with\ respect\ to\ w:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-{e}^{(-xw + b)}}{({e}^{(-xw + b)} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-{e}^{(-xw + b)}}{({e}^{(-xw + b)} + 1)^{2}}\right)}{dw}\\=&-(\frac{-2(({e}^{(-xw + b)}((-x + 0)ln(e) + \frac{(-xw + b)(0)}{(e)})) + 0)}{({e}^{(-xw + b)} + 1)^{3}}){e}^{(-xw + b)} - \frac{({e}^{(-xw + b)}((-x + 0)ln(e) + \frac{(-xw + b)(0)}{(e)}))}{({e}^{(-xw + b)} + 1)^{2}}\\=&\frac{-2x{e}^{(-2xw + 2b)}}{({e}^{(-xw + b)} + 1)^{3}} + \frac{x{e}^{(-xw + b)}}{({e}^{(-xw + b)} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !