Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{z}^{3}}{({(z + sqrt(2) + 1)}^{2}{({z}^{2} - 2z - 1)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{z^{3}}{(z + sqrt(2) + 1)^{2}(z^{2} - 2z - 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{z^{3}}{(z + sqrt(2) + 1)^{2}(z^{2} - 2z - 1)^{2}}\right)}{dx}\\=&\frac{(\frac{-2(0 + 0*\frac{1}{2}*2^{\frac{1}{2}} + 0)}{(z + sqrt(2) + 1)^{3}})z^{3}}{(z^{2} - 2z - 1)^{2}} + \frac{(\frac{-2(0 + 0 + 0)}{(z^{2} - 2z - 1)^{3}})z^{3}}{(z + sqrt(2) + 1)^{2}} + 0\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return