There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {({2}^{(\frac{1}{x} - 1)})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {2}^{(\frac{2}{x} - 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{(\frac{2}{x} - 2)}\right)}{dx}\\=&({2}^{(\frac{2}{x} - 2)}((\frac{2*-1}{x^{2}} + 0)ln(2) + \frac{(\frac{2}{x} - 2)(0)}{(2)}))\\=&\frac{-2 * {2}^{(\frac{2}{x} - 2)}ln(2)}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2 * {2}^{(\frac{2}{x} - 2)}ln(2)}{x^{2}}\right)}{dx}\\=&\frac{-2*-2 * {2}^{(\frac{2}{x} - 2)}ln(2)}{x^{3}} - \frac{2({2}^{(\frac{2}{x} - 2)}((\frac{2*-1}{x^{2}} + 0)ln(2) + \frac{(\frac{2}{x} - 2)(0)}{(2)}))ln(2)}{x^{2}} - \frac{2 * {2}^{(\frac{2}{x} - 2)}*0}{x^{2}(2)}\\=&\frac{4 * {2}^{(\frac{2}{x} - 2)}ln(2)}{x^{3}} + \frac{4 * {2}^{(\frac{2}{x} - 2)}ln^{2}(2)}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !