There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{10}^{x + sqrt(1 + xx)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{10}^{x + sqrt(x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{10}^{x + sqrt(x^{2} + 1)}\right)}{dx}\\=&(\frac{(\frac{(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))} - \frac{(0)log_{10}^{x + sqrt(x^{2} + 1)}}{(10)})}{(ln(10))})\\=&\frac{x}{(x^{2} + 1)^{\frac{1}{2}}(x + sqrt(x^{2} + 1))ln(10)} + \frac{1}{(x + sqrt(x^{2} + 1))ln(10)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !